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Semiclassical coupled wave theory for TM waves in one-dimensional photonic crystals
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Semiclassical coupled wave theory is extended to waves with the electric field polarized parallel to the plane
of incidence(TM waves in one-dimensional periodic dielectric structures. Using this theory, the bandwidths
and reflection/transmission characteristics of such structures, as functions of the incident wave frequency, are
in good agreement with exact numerical simulations even for very high refractive index contrast.
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I. INTRODUCTION tinuous harmonic profile of the refractive index. The conclu-

A one-dimensional periodic structure with high refractive SIONs are in Sec. V.
index contrast can serve as a photonic crygtabl. Among
the common theoretical methods for wave motion in such
structures, the coupled wave approach offers superior physi-
cal insight and gives simple analytical results in limiting
cases. Unfortunately, the conventional coupled wave theor
of Kogelnik [6—8] fails in the case of high refractive index
contrast, which is required for a one-dimensio(fD) pho-
tonic crystal.

In a previous papef9] we extended the first approxima-

Il. SEMICLASSICAL COUPLED WAVE THEORY

We consider a wide, absorptionless, nonmagngiic 1)
¥lab whose normal is the axis, occupying the region
0<z<L. The index of refractiom(z)=n(z+d) varies peri-
odically in thez direction, but does not depend riory. The
slab is surrounded on both sides by a homogeneous dielectric

tion of the semiclassical coupled wave theory for normalrnedium withn(z)=n, on the left, anch(z)=n on the right.
P y In Gaussian units, the dielectric permittivitg(z) is the

propagation[10,17 to the case of oblique incidence of L 5
waves with the electric field polarized perpendicular to the>dyare of the refractive index(z)=n*(z). For monochro-

plane of incidenceTE waves. Using the Bogolyubov aver- matic fields of circular frequency, i.e., fqr harmonic time
aging method[12], we developed a second approximation déPendence, we can setr,t)=E(r)exp(-iwt) andH(r,1)
for the same case. Our method allows for both variable am=H (")exp(=iot). _

plitudes and variablégeometric-opticsphases in the coun- M waves haveH perpendicular to the plane of wave
terpropagating waves. While it is analytically almost asPropagation, which we choose as tke plane, when the
simple as conventional coupled wave theory, our method igefractive index varies only in the direction. WritingH(r)

essentially exact for any achievable rafog., 1.5:4.50of the =H(2)e"#®,, Maxwell's equations inside the periodic slab
indices of refraction of the layers comprising buildable de-reduce to a single scalar equation for the amplitittie)
vices. =Hy,

In this paper we extend our semiclassical coupled wave
theory to the case of oblique propagation of electromagnetic d/ 1 dH ) 2
waves with the electric field polarized parallel to the plane of 42\ ez dz 1- <@ H(z)=0 1)

incidence(TM wavesg. Both the first and the second approxi-
mations are extracted. Surprisingly, the first approximation o
works even better for the TM case than it did for TE wavesOr; in terms of the refractive index
The second approximation gives practically exact results
even for structures with a very deep modulation of the re- d2H 2 dn(z) dH
fractive index. Using our analytic expressions for the band P K(n?(2) - BPIH@D) - ————-=
. o i ; n(z dz dz
edges, one can easily optimize the positions and widths of
the forbidden zones, in order to fine-tune photonic devices.
In the following section, the semiclassical coupled-waveln these formulask=w/c, andkg is the(constant x compo-
method for TM waves is developed. We obtain simple ananent of the wave vector of modulus(2)=wn(z)/c inside
lytical expressions for the Bloch phase, which is a key pathe medium. If a TM wave impinges on the periodic medium
rameter for determination of band structure, and for the refrom the regiore<0, theng=ny sin 6, whered, is the angle
flection or transmission amplitudes. As an application, inof incidence measured from the normal. According to Max-
Sec. Ill we find the optimal omnidirectional forbidden band Well's equations, the componerig(z) andE,(2) of the elec-
of a bilayer periodic dielectric structure. In Sec. IV we showtric field of the TM waveE(r) =[E,(2)8+ E,(2)&,]e¥#* can be
how to apply the theory to a periodic structure with a con-expressed as

(2)
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__i_dH2 B,
ke(z) dz e(2)

We require the fieldsH,(z) and E,(z) to be continuous.
Therefore, at any point of discontinuiy of the dielectric
permittivity e(z), or correspondingly of the refractive index
n(z), we matchH(z) and n"%(z2)dH(z)/dz By means of the
substitutionH(z) =h(z)n(z), we eliminate the first derivative
term from EqQ.(2),

d’h(2)

B

Ex(2) = Ef2) =~ 3

e +[k%(n%(2) - B% + Q(2)]n(2) = 0, (4)
where
L2 (on)
CD=12 a2 o\ ®

Eq. (4) [as well as Eq(2) of Ref.[9] for TE polarization, is
formally equivalent to the wave equation for normal inci-
dence if we were to follow Ginzburfl3] in setting the ef-
fective value ofn(z) to

n’(2) - B2,

8@ =\ ) - g+ 2

for TE (s) and TM (p) polarizations, respectively. However,
n(z) would then depend on the vacuum wave nuniband
it would be quite difficult to extend our semiclassical

nz( Z) = \r’

(6)

coupled wave theory to the TM case. Instead, let us use the

same effective value af(z) for TM waves as for TE waves.
Introducing the notatiom,=n$(z), we seek a solution of Eq.
(4) in terms of two counterpropagating waves with slowly
varying amplitudesA*(z) and geometric-optics phases

A(_)(Z)e_i W2
\“”ne(z)

AD(2)d D
ho=2 28,

v ne( 2)

H2) =k J Ne(z')dz. )

After the substitution of expressiai), Eq. (4) (and, there-
fore, Maxwell's equationsbecomes an identity if the ampli-
tudesA®)(z) satisfy the system

dA* (z) - A
dz
dA- )(Z) 3 .
=SY(20AM(2), (8)
dz
where
S¥(2) =w(z)e*?"?, 9

and the functionw(z) satisfies the Riccati equation
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dw_1dne oo 11 d"‘ne_ﬂ(dne)z
dz ne dz" 2n.dZ  4n2\ dz
+ E(d_n) 1dn (10
n\dz) ndZ2’
This has an exact solution
11dn, 1dn
e 11
w2 = 2n,dz ndz (1)

For TE waves(see Ref[9]), the analogous procedure leads
to the same form (8) of S*(z) but with w(z)
=1/(2n4(2))dn,/dz The system@8) is exact. Introducing the
phase averaged refractive index,,=(d)/kd, i.e.,

e,av

1(¢ 19 50—
" J Ne(z')dz = — J Vn¥(2) - gz, (12)
dJo dJo

we find that the quantitieS*)(z)exp(+ 2ikn, 5,2) are periodic
functions that can be Fourier expanded as

m=+c
gt)(z)eizikneyavz: E pﬁ)eiZWmZ'd’ (13)
m=—o0
where
d
p<¢>:lp f ( 1 d_”e_L@)eziuw(zﬁkne,avz—wmﬂdmz
™ od J,\2ng2) dz n(z) dz

) 2(5 _
.\ iz In(ne(Z’ + O)nz(z] 0)
2d5 Ne(z; - 0)n“(z; + 0)
XeZi(iz//(zj)Ikneyavzj—wmqld).

|

Physically, these coefficients embody the importance of cou-
pling between the two counterpropagating wavesg/fdue
to themth Fourier components of the functio8%(z). The P
implies a principal value integral, and the sum oer
=1,2,...takes into account the contribution pﬁ) of jumps
in the refractive index(z) at the points of discontinuity
within the period. If a discontinuity im(z) occurs at the
beginning or at the end of a period, we should take this
discontinuity into account only once, say at the beginning of
the period. The quantities(zj=0) are the limiting values of
the refractive index(z) to the right/left of a point of discon-
t|nU|ty z. We see thap(+) is just the complex conjugate of
so from th|s pomt forward we will use the notation
pg =p,, and p m—pm These coefficients depend on the
wave numbek of the incident wave, on the behavior of the
slab refractive indexn(z)=n(z+d) over a periodd, and on
the external conditiongng, 6,). However, in case of normal
incidence(6,=0) the dependence om, drops out. In con-
ventional coupled wave theory the magnitudes of the cou-
pling coefficients for TM case are determined by

(14)

Kk 1-2pleq

2d Sav

con

d
o S(Z)e—ZMTszd dZ,

0
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- | e(zdz (15)
0 and

€av d

1 f ‘ 7100 =VIpg0 = & 7,0 =\lpgP - 72, (19)

con

The difference between the coupling coefficieptsandp; q I 2
is the key point of departure of our semiclassical theory from Nq= Oq+ — > L_
the conventionalKogelnik) one and is due to the fact that in N 2m S m-q - Sdim
our theory multiwave diffraction by periodic inhomogene- . } o
ities of (2) is taken into account. In Kogelnik theory only !N forbidden bands, wherg| > |5;| (first approximatio or
one diffracted wave, expikz\s,,— 3% [in addition to the [pg|> 74| (second approximation v, is a real positive
transmitted wave, exikzye,,—3%)], was assumed to exist f?“mber- In allowed bands, whe|rm]|§|5q[ (first approxima-
within the periodic structure. tion), or |pgl <|74| (second approximation y; , is a pure

, . imaginary number:y;=i|y|, if 6;<0 and y;==i|yy], if
In order to find the band gaps and transmission or reflec5 ~0: =iy, if 7,<0 and o= =il ol if 74>0. These

tion coefficients of the structure we must solve the systerr}q . o . :
: ! ormulas determine the position and width of the forbidden
(8). As in Ref.[9], we define the Bragg resonandgsof our band for the TM mode pat a given angle of incideng

periodic slab, by Similar formulas apply to the TE mode at the same angle but
- with different coefficientg,, as in Ref.[9].
KgNe,av = aq, g=1,2,3,... (16) At normal incidence the distinction between TM and TE
modes disappears; to be more accurate the coupling coeffi-
cients for the two polarizations are related gy’ =—p/=. At
increasingly oblique angles the forbidden band of the TE
mode widengif all other parameters of the slab are fiyed
- - - whereas the forbidden band of the TM mode narrows. The
KNg, oy = R Ogr ~ 24 = Ogr1 < 2 center of the forbidden band shifts to higher wave nuniber
(to higher frequencigsTherefore, an omnidirectional forbid-
den band for both TE and TM polarizations occurs if there is
an overlap between the forbidden band at normal incidence
and the forbidden band of the TM mode at 90°. As a result,
Equation(16) is the well-known Bragg condition for con- in a first approximation the righk; and leftk, boundaries of
structive interference. Physically, it means that the opticathe gth omnidirectional forbidden band can be found from
path difference between partial waves reflected from succeshe equations
sive planes of the inhomogeneous refractive index contains

m=+o©

(20)

and introduce the detuning, from theqth Bragg resonance,
as

a a
__<51<_

q o (17)

an integral number of wavelengths. In the initi&eroth”) kiNay — gm/d = [pq(k;, g,=0)|,
approximation the Bragg resonances coincide with the cen-
ters of the forbidden bands. In conventional coupled wave qrr/d = K Nsin. ay= Ipq(k|,00:900)|, (21)

theory the Bragg resonances are located at points
wherekqdye,,~ B%=mq. This leads to a less accurate deter-where
mination of the centers of the forbidden bardsand, as a §
result, to a less accurate estimation of the detudipghis is _1 Ndz
the second point of departure between the two theories. Nay = d f 0 n(z')dz',

If all the coefficients satisfyip,d| <1 and the detuning
|6,d/ <1, we can use the method of averag[ig] to obtain d
an approximate solution aB). In practice, the method as- n. :}f dezr (22)
sumes that the main contribution to the exact solution@pf mAd S, o=
is provided by the slowly varying components of the func-
tions St(2). (We also note that the method of averaging canTherefore, the centde, of the gth omnidirectional reflection
give reasonable results even in cases where some ¢pthe band and its relative bandwidth, are given by
or |8, exceed 1d.) Repeating the calculations of Re#®],
but taking into account that the coefficieng for TM po- k.= W_Q(i N 1 > . [Pg(Kr g=0)| B [Pg(Ki,,=00°)
larization are determined bj14) and, therefore, differ from T 2N,y 2Nmin av
the TE case, we find that in each zone along khaxis
w(—%+q)/(neya\)d)<k< w(%+q)/(ne,a\;j), the characteristic
index & and the Bloch phasgin the first and second ap-

Nay nmin,av

Kr 0= o0
Aqu=W_Q<i_ 1 )+|Pq< a0 1Pk azo0)|

proximations take the forms d \Nay  Nninav Nay Nimin,av
(23
v . .
®Bo=A  Ting da=amtivd, (18)  The reflection and transmission amplitudes for a wave inci-
dent on a matched periodic structure in the first and second

where approximations take the form
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Nt — pg Sinh(y1L) a _ y,€ ™

By cost{y,L) —id;siniy,l)’ ® 9y costiyl) -8, sinh(y,L)’

(@ = (= pg— 2iggu* + pu™)sinh(y,L)
B (1 -[u)ys costiysl) —i[(1 +[u[d) 74— 2 Im(pgu* )]sinh(y,L)’

(24)

(@ = (1 —|uf®) y,e™9 5
B (1 -[u)ys costiysl) —i[(1 +[u[d) 74— 2 Im(pgu* )]sinh(y,L)

where I1l. BI-LAYER PHOTONIC CRYSTAL
S To illustrate our semiclassical coupled wave theory, we
__id s Pm (26) consider a two-layered periodic medium with real refractive
u= 27T e Someq M= 0 = 5qd/7r' indicesn; andn, and layer thicknesses; andd, such that

d=d;+d,, as shown in Fig. 1. According 1d.2) the effective

o i . averaged refractive index of this slab is
By matched, we mean that the refractive index is continuous

across the exterior boundariesza#0 andz=L, i.e., there is e )
no Fresnel reflection from them. The reflectianand trans- — Vi - B7dy + Vny - By (28)
missionty amplitudes for an arbitrargnonmatcheglperiodic eav d '

structure can be found from the matrix equation

The first(integra) term in (14) is zero. The contributions to

1 o rolty\[ 1hts ity \[ 1t refte\[ts the second term come from the poireg=d;/2 and z,
( ) :< ) x ( )( ) =d;/2+d,. Summing them, we obtain
rs rolto o /\rgltg 1itg /\relty 1it; /\O
(27) P = I_ |n|: V’ng_ ﬁzn%]e-im‘n'
Tod L ng- g3

where the Fresnel reflectiog ; and transmission coefficients

tos for TM waves are responsible for the wave transforma- |d |

tion on the boundaries of the structure. X S'”{EZ[""” key(\n3 - g2 = \ni - )] |.
The expressiong24) for the reflection and transmission

coefficients in the first approximation of the semiclassical

coupled wave theory have the same form as those in the

conventional coupled wave theofy,8,11], if we take into As a result, the relative bandwidth of tiqgh omnidirectional

account the difference between the positions of the Braggeflection band according to Eg3) is

resonances described above, and the magnitudes of coupling

(29)

coefficients in the two theories. Due to these differences, as qm(1 —a)/d + [py(Kgg.=0)| + @l Pg(Kg, g =00°)
we shall see in the next section, the first approximation of Ag= /d 2 = ,
our semiclassical theory already gives eminently reasonable qm(L +a)/d + |pg(kg,p,=0)| ~ alPg(kg,gp=00°)

results in cases where the conventional theory fails. The sec-
ond approximation of the semiclassical theory gives good

agreemengwithin 10%) with exact numerical results even in — Nygdip + o
. . a=—=——7 = . (30)

the most unfavorable situations. Vngo— 1d;, + Vn3o— 1

n(z) wheren;;=n;/ng, Ny=n,/n,, dy,=d;/d,, and we take into

account that
|y Ui
n, R, d, G2 |pq(k|,aO:90°)| ~ |pq(kq,00:90°)
_ E | N n%o_ 1n%0
0 d (N-1)d Nd z T d n \/nzo——lngo
1

FIG. 1. Two-layered periodic dielectric structutiei-layer pho-

. qm
tonic crysta). ><S|n( T )
1+ \nZy— 1d;5/VnZ- 1
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FIG. 2. Bloch phase and reflection vs frequency for TM mode at
normal and 85° angle of incidence on the two-layered periodic
structure with the parameters described in text; exact numerical FIG. 4. Bloch phase and reflection vs frequency for TM mode at
results(solid line); first approximation of the semiclassical theory 0.1 and 85° angle of incidence on the harmonic periodic struc-
(thin line with pointg. The shaded region shows the omnidirec- e \yith a moderatén,=0.5 refractive index modulation; the pa-
tional band gap. rameters are as described in text; exact numerical regsdtid

line); first approximation of the semiclassical thegtlyin line with

‘pq(kr,00=0)| =~ |pq(kq,90=o)| points.

Frequency, 1014 Hz

:} In(m>sin< qm > (31) the relative bandwidth. Moreover, for a given ambient me-
d Ny 1+ny0inyg/ | dium ny we can obtain the widest possible relative bandwidth
) ) L of the gth omnidirectional band if we maximize the above
One sees that the relative bandwidth of 4th omnidirec-  ¢nction with respect to all three parameters simultaneously.
tional band(when it exist$ depends on just three ratias, Let us consider a specific example. For the tin sulfide/
nzo,.and di». For each chpice of materials, i.e., for each silica (n,=2.6, n,=1.4 structure in aifny=1.0) on a sub-
choice ofnyo andny, there is a value ofl;, that maximizes 10 withn, = 2.6, the first omnidirectional reflection band is
centered at the frequenay.=4.49x 10" Hz (\,=668 nm

n(z) with the relative bandwidti;=9.2% if the thicknesses of
_ ny the layers arel;=80 nm andd,=115 nm. These parameters
N correspond to those in an experiment of Deopetral. [14].
/\/’ \\ //\j Keeping the first material the sanme =2.6), we obtain from
o R Eqg. (30) that the optimal second material should have
=1.5 and the ratio of the layer thicknesses shoulddbe
0 d (N-1)d Nd z =8/11, rather thard;,=16/23. This ratio provides relative
bandwidth A;=9.4%. To obtain omnidirectional reflection
FIG. 3. Harmonic periodic dielectric structure. centered at the same frequengy4.49x 10'* Hz, we need
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1.04=

cos ¢

-0.51

-1.5-

Reflection

Reflection

Frequency, 1014 Hz

FIG. 5. Bloch phase and reflection vs frequency for TM mode at
normal and 85° angle of incidence on the harmonic periodic struc

ture with a deein,=1.5 refractive index modulation; the param-
eters are as described in text; exact numerical resgsdisd line);
first approximation of the semiclassical theaigray solid line;
second approximation of the semiclassical the@uints.

d;=80 nm andd,=110 nm. In Fig. 2 we show the Bloch
phase ¢ and reflection coefficient for a structure of

PHYSICAL REVIEW E70, 016606(2004

IV. HARMONIC PERIODIC STRUCTURE

As a second application of our theory, we consider a pe-
riodic structure with a harmonic refractive index profile of
the form n(z)=n,,+n, sin(2wz/d); see Fig. 3. Initially we
taken,,=1.965 anddi=190 nm as in the previous example of
a bilayer photonic crystal. The number of peridds6 and
the refractive indices of the ambient medig=1 and the
substraten;=2.6 correspond to that example as well. For a
moderate refractive index modulation=0.5 the results are
shown in Fig. 4. Again, the first approximation of the semi-
classical coupled wave theory is in good agreement with the
exact numerical solutions.

For the second harmonic structure we take=3 andd
=124.5 nm(to keep the same produet,d as in the previous
examplg and consider the very deep modulation=1.5.
The results are shown in Fig. 5. The first approximation,
especially for normal incidence, is satisfactory only in for-
bidden bands. However, the second approximation works
well for all frequencies of the incoming waves. Also, this
example shows that for TM waves, the first approximation of
our semiclassical coupled wave theory works better for large
incident angleg), than for small ones. This is contrary to the
case of TE waves; see R¢f].

V. CONCLUSIONS

The semiclassical coupled wave the@8} has been ex-
tended to TM waves. Surprisingly, the method appears to
work even better for TM waves than for TE waves. In many
cases the first approximation of our theory provides adequate
results, using simple analytic expressions. However, if the
modulation of the refractive index of the periodic structure is
very deep, one needs to go to the second approximation. This
is based on the Bogolyubov averaging method, and uses
somewhat more complicated expressions. We now plan to
extend the semiclassical coupled wave theory to absorptive
media.
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