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Semiclassical coupled wave theory is extended to waves with the electric field polarized parallel to the plane
of incidence(TM waves) in one-dimensional periodic dielectric structures. Using this theory, the bandwidths
and reflection/transmission characteristics of such structures, as functions of the incident wave frequency, are
in good agreement with exact numerical simulations even for very high refractive index contrast.
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I. INTRODUCTION

A one-dimensional periodic structure with high refractive
index contrast can serve as a photonic crystal[1–5]. Among
the common theoretical methods for wave motion in such
structures, the coupled wave approach offers superior physi-
cal insight and gives simple analytical results in limiting
cases. Unfortunately, the conventional coupled wave theory
of Kogelnik [6–8] fails in the case of high refractive index
contrast, which is required for a one-dimensional(1D) pho-
tonic crystal.

In a previous paper[9] we extended the first approxima-
tion of the semiclassical coupled wave theory for normal
propagation[10,11] to the case of oblique incidence of
waves with the electric field polarized perpendicular to the
plane of incidence(TE waves). Using the Bogolyubov aver-
aging method[12], we developed a second approximation
for the same case. Our method allows for both variable am-
plitudes and variable(geometric-optics) phases in the coun-
terpropagating waves. While it is analytically almost as
simple as conventional coupled wave theory, our method is
essentially exact for any achievable ratio(e.g., 1.5:4.6) of the
indices of refraction of the layers comprising buildable de-
vices.

In this paper we extend our semiclassical coupled wave
theory to the case of oblique propagation of electromagnetic
waves with the electric field polarized parallel to the plane of
incidence(TM waves). Both the first and the second approxi-
mations are extracted. Surprisingly, the first approximation
works even better for the TM case than it did for TE waves.
The second approximation gives practically exact results
even for structures with a very deep modulation of the re-
fractive index. Using our analytic expressions for the band
edges, one can easily optimize the positions and widths of
the forbidden zones, in order to fine-tune photonic devices.

In the following section, the semiclassical coupled-wave
method for TM waves is developed. We obtain simple ana-
lytical expressions for the Bloch phase, which is a key pa-
rameter for determination of band structure, and for the re-
flection or transmission amplitudes. As an application, in
Sec. III we find the optimal omnidirectional forbidden band
of a bilayer periodic dielectric structure. In Sec. IV we show
how to apply the theory to a periodic structure with a con-

tinuous harmonic profile of the refractive index. The conclu-
sions are in Sec. V.

II. SEMICLASSICAL COUPLED WAVE THEORY

We consider a wide, absorptionless, nonmagneticsm=1d
slab whose normal is thez axis, occupying the region
0,z,L. The index of refractionnszd=nsz+dd varies peri-
odically in thez direction, but does not depend onx or y. The
slab is surrounded on both sides by a homogeneous dielectric
medium withnszd=n0 on the left, andnszd=nf on the right.
In Gaussian units, the dielectric permittivityeszd is the
square of the refractive index,eszd=n2szd. For monochro-
matic fields of circular frequencyv, i.e., for harmonic time
dependence, we can setEsr ,td=Esr dexps−ivtd and Hsr ,td
=Hsr dexps−ivtd.

TM waves haveH perpendicular to the plane of wave
propagation, which we choose as thexz plane, when the
refractive index varies only in thez direction. WritingHsr d
=Hszdeikbxêy, Maxwell’s equations inside the periodic slab
reduce to a single scalar equation for the amplitudeHszd
=Hy,

d

dz
S 1

eszd
dH

dz
D + k2F1 −

b2

eszdGHszd = 0 s1d

or, in terms of the refractive index

d2H

dz2 + k2fn2szd − b2gHszd −
2

nszd
dnszd

dz

dH

dz
= 0. s2d

In these formulas,k=v /c, andkb is the(constant) x compo-
nent of the wave vector of modulusknszd=vnszd /c inside
the medium. If a TM wave impinges on the periodic medium
from the regionz,0, thenb=n0 sinu0, whereu0 is the angle
of incidence measured from the normal. According to Max-
well’s equations, the componentsExszd andEzszd of the elec-
tric field of the TM waveEsr d=fExszdêx+Ezszdêzgeikbx can be
expressed as
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Exszd = −
i

keszd
dHszd

dz
, Ezszd = −

b

eszd
Hszd. s3d

We require the fieldsHyszd and Exszd to be continuous.
Therefore, at any point of discontinuityzj of the dielectric
permittivity eszd, or correspondingly of the refractive index
nszd, we matchHszd and n−2szddHszd /dz. By means of the
substitutionHszd=hszdnszd, we eliminate the first derivative
term from Eq.(2),

d2hszd
dz2 + fk2sn2szd − b2d + Qszdghszd = 0, s4d

where

Qszd =
1

nszd
d2nszd

dz2 −
2

n2szd
Sdn

dz
D2

. s5d

Eq. (4) [as well as Eq.(2) of Ref. [9] for TE polarization], is
formally equivalent to the wave equation for normal inci-
dence if we were to follow Ginzburg[13] in setting the ef-
fective value ofnszd to

ne
sszd = În2szd − b2,

ne
pszd =În2szd − b2 +

Qszd
k2 s6d

for TE ssd and TM spd polarizations, respectively. However,
ne

pszd would then depend on the vacuum wave numberk and
it would be quite difficult to extend our semiclassical
coupled wave theory to the TM case. Instead, let us use the
same effective value ofnszd for TM waves as for TE waves.
Introducing the notationne=ne

sszd, we seek a solution of Eq.
(4) in terms of two counterpropagating waves with slowly
varying amplitudesA±szd and geometric-optics phases

hszd =
As+dszdeicszd

Îneszd
+

As−dszde−icszd

Îneszd
,

cszd = kE
0

z

nesz8ddz8. s7d

After the substitution of expression(7), Eq. (4) (and, there-
fore, Maxwell’s equations) becomes an identity if the ampli-
tudesAs±dszd satisfy the system

dAs+dszd
dz

= Ss−dszdAs−dszd,

dAs−dszd
dz

= Ss+dszdAs+dszd, s8d

where

Ss±dszd = wszde±2icszd, s9d

and the functionwszd satisfies the Riccati equation

dw

dz
−

1

ne

dne

dz
w + w2 =

1

2

1

ne

d2ne

dz2 −
3

4

1

ne
2Sdne

dz
D2

+
2

n2Sdn

dz
D2

−
1

n

d2n

dz2 . s10d

This has an exact solution

wszd =
1

2

1

ne

dne

dz
−

1

n

dn

dz
. s11d

For TE waves,(see Ref.[9]), the analogous procedure leads
to the same form (8) of Ss±dszd but with wszd
=1/s2neszdddne/dz. The system(8) is exact. Introducing the
phase averaged refractive indexne,av=csdd /kd, i.e.,

ne,av=
1

d
E

0

d

nesz8ddz8 ;
1

d
E

0

d

În2sz8d − b2dz8, s12d

we find that the quantitiesSs±dszdexps72ikne,avzd are periodic
functions that can be Fourier expanded as

Ss±dszde72ikne,avz = o
m=−`

m=+`

pm
s±dei2pmz/d, s13d

where

pm
s±d =

1

d
PE

0

d S 1

2neszd
dne

dz
−

1

nszd
dn

dz
De2is±cszd7kne,avz−pmz/dd dz

+
1

2d
o

j

lnSneszj + 0dn2szj − 0d
neszj − 0dn2szj + 0dD

3e2is±cszjd7kne,avzj−pmzj/dd. s14d

Physically, these coefficients embody the importance of cou-
pling between the two counterpropagating waves of(7) due
to themth Fourier components of the functionsS±szd. TheP
implies a principal value integral, and the sum overj
=1,2, . . .takes into account the contribution topm

s±d of jumps
in the refractive indexnszd at the points of discontinuityzj

within the period. If a discontinuity innszd occurs at the
beginning or at the end of a period, we should take this
discontinuity into account only once, say at the beginning of
the period. The quantitiesnszj ±0d are the limiting values of
the refractive indexnszd to the right/left of a point of discon-
tinuity zj. We see thatp−m

s+d is just the complex conjugate of
pm

s−d, so from this point forward we will use the notation
pm

s−d;pm and p−m
s+d =pm

* . These coefficients depend on the
wave numberk of the incident wave, on the behavior of the
slab refractive indexnszd=nsz+dd over a periodd, and on
the external conditionssn0,u0d. However, in case of normal
incidencesu0=0d the dependence onn0 drops out. In con-
ventional coupled wave theory the magnitudes of the cou-
pling coefficients for TM case are determined by

pm
con=

k

2d

1 − 2b/«av

Î«av − b2 E
0

d

«szde−2ipmz/d dz,
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«av =
1

d
E

0

d

«szddz. s15d

The difference between the coupling coefficientspm andpm
con

is the key point of departure of our semiclassical theory from
the conventional(Kogelnik) one and is due to the fact that in
our theory multiwave diffraction by periodic inhomogene-
ities of «szd is taken into account. In Kogelnik theory only
one diffracted wave, exps−ikzÎ«av−b2d [in addition to the
transmitted wave, expsikzÎ«av−b2d], was assumed to exist
within the periodic structure.

In order to find the band gaps and transmission or reflec-
tion coefficients of the structure we must solve the system
(8). As in Ref.[9], we define the Bragg resonanceskq of our
periodic slab, by

kqne,av=
p

d
q, q = 1,2,3, . . . s16d

and introduce the detuningdq from theqth Bragg resonance,
as

kne,av=
p

d
q + dq, −

p

2d
, dqÞ1 ,

p

2d
,

−
p

d
, d1 ,

p

2d
. s17d

Equation(16) is the well-known Bragg condition for con-
structive interference. Physically, it means that the optical
path difference between partial waves reflected from succes-
sive planes of the inhomogeneous refractive index contains
an integral number of wavelengths. In the initial(“zeroth”)
approximation the Bragg resonances coincide with the cen-
ters of the forbidden bands. In conventional coupled wave
theory the Bragg resonances are located at points
wherekqdÎ«av−b2=pq. This leads to a less accurate deter-
mination of the centers of the forbidden bandskq and, as a
result, to a less accurate estimation of the detuningdq. This is
the second point of departure between the two theories.

If all the coefficients satisfyupmdu,1 and the detuning
udqdu,1, we can use the method of averaging[12] to obtain
an approximate solution of(8). In practice, the method as-
sumes that the main contribution to the exact solutions of(8)
is provided by the slowly varying components of the func-
tions S±szd. (We also note that the method of averaging can
give reasonable results even in cases where some of theupmu
or udqu exceed 1/d.) Repeating the calculations of Ref.[9],
but taking into account that the coefficientspm for TM po-
larization are determined by(14) and, therefore, differ from
the TE case, we find that in each zone along thek axis
ps−1

2 +qd / sne,avdd,k,ps 1
2 +qd / sne,avdd, the characteristic

index æ and the Bloch phasef in the first and second ap-
proximations take the forms

æ1,2= q
p

d
+ ig1,2, f1,2= qp + ig1,2d, s18d

where

g1skd = Îupqskdu2 − dq
2, g2skd = Îupqskdu2 − hq

2, s19d

and

hq = dq +
d

2p
o

mÞq=−`

m=+` upmu2

m− q − dqd/p
. s20d

In forbidden bands, whereupqu. udqu (first approximation), or
upqu. uhqu (second approximation), g1,2 is a real positive
number. In allowed bands, whereupqu, udqu (first approxima-
tion), or upqu, uhqu (second approximation), g1,2 is a pure
imaginary number:g1= i ug1u, if dq,0 and g1=−i ug1u, if
dq.0; g2= i ug2u, if hq,0 and g2=−i ug2u, if hq.0. These
formulas determine the position and width of the forbidden
band for the TM mode at a given angle of incidenceu0.
Similar formulas apply to the TE mode at the same angle but
with different coefficientspm as in Ref.[9].

At normal incidence the distinction between TM and TE
modes disappears; to be more accurate the coupling coeffi-
cients for the two polarizations are related bypm

TM =−pm
TE. At

increasingly oblique angles the forbidden band of the TE
mode widens(if all other parameters of the slab are fixed),
whereas the forbidden band of the TM mode narrows. The
center of the forbidden band shifts to higher wave numberk
(to higher frequencies). Therefore, an omnidirectional forbid-
den band for both TE and TM polarizations occurs if there is
an overlap between the forbidden band at normal incidence
and the forbidden band of the TM mode at 90°. As a result,
in a first approximation the rightkr and leftkl boundaries of
the qth omnidirectional forbidden band can be found from
the equations

krnav − qp/d = upqskr,u0=0du,

qp/d − klnmin,av= upqskl,u0=90°du, s21d

where

nav =
1

d
E

0

d

nsz8ddz8,

nmin,av=
1

d
E

0

d

În2sz8d − n0
2dz8. s22d

Therefore, the centerkc of the qth omnidirectional reflection
band and its relative bandwidthDq are given by

kc =
pq

2d
S 1

nav
+

1

nmin,av
D +

upqskr,u0=0du

2nav
−

upqskl,u0=90°du

2nmin,av
,

Dqkc =
pq

d
S 1

nav
−

1

nmin,av
D +

upqskr,u0=0du

nav
+

upqskl,u0=90°du

nmin,av
.

s23d

The reflection and transmission amplitudes for a wave inci-
dent on a matched periodic structure in the first and second
approximations take the form
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rB
s1d =

− pq
* sinhsg1Ld

g1 coshsg1Ld − idq sinhsg1Ld
, tB

s1d =
g1e

ipNq

g1 coshsg1Ld − idq sinhsg1Ld
,

rB
s2d =

s− pq
* − 2ihqu * + pqu

*2dsinhsg2Ld
s1 − uuu2dg2 coshsg2Ld − ifs1 + uuu2dhq − 2 Imspqu * dgsinhsg2Ld

, s24d

tB
s2d =

s1 − uuu2dg2e
ipNq

s1 − uuu2dg2 coshsg2Ld − ifs1 + uuu2dhq − 2 Imspqu * dgsinhsg2Ld
, s25d

where

u = −
id

2p
o

m=−`,mÞq

m=+`
pm

m− q − dqd/p
. s26d

By matched, we mean that the refractive index is continuous
across the exterior boundaries atz=0 andz=L, i.e., there is
no Fresnel reflection from them. The reflectionrS and trans-
missiontS amplitudes for an arbitrary(nonmatched) periodic
structure can be found from the matrix equation

S 1

rS
D = S 1/t0 r0/t0

r0/t0 1/t0
DS 1/tB rB

* /tB
*

rB/tB 1/tB
* DS1/tf r f/tf

r f/tf 1/tf
DStS

0
D ,

s27d

where the Fresnel reflectionr0,f and transmission coefficients
t0,f for TM waves are responsible for the wave transforma-
tion on the boundaries of the structure.

The expressions(24) for the reflection and transmission
coefficients in the first approximation of the semiclassical
coupled wave theory have the same form as those in the
conventional coupled wave theory[7,8,11], if we take into
account the difference between the positions of the Bragg
resonances described above, and the magnitudes of coupling
coefficients in the two theories. Due to these differences, as
we shall see in the next section, the first approximation of
our semiclassical theory already gives eminently reasonable
results in cases where the conventional theory fails. The sec-
ond approximation of the semiclassical theory gives good
agreement(within 10%) with exact numerical results even in
the most unfavorable situations.

III. BI-LAYER PHOTONIC CRYSTAL

To illustrate our semiclassical coupled wave theory, we
consider a two-layered periodic medium with real refractive
indicesn1 and n2 and layer thicknessesd1 and d2 such that
d=d1+d2, as shown in Fig. 1. According to(12) the effective
averaged refractive index of this slab is

ne,av=
În1

2 − b2d1 + În2
2 − b2d2

d
. s28d

The first (integral) term in (14) is zero. The contributions to
the second term come from the pointsz1=d1/2 and z2
=d1/2+d2. Summing them, we obtain

pm =
i

d
lnFÎn2

2 − b2n1
2

În1
2 − b2n2

2Ge−imp

3 sinFd2

d
fmp + kd1sÎn2

2 − b2 − În1
2 − b2dgG .

s29d

As a result, the relative bandwidth of theqth omnidirectional
reflection band according to Eqs.(23) is

Dq < 2
qps1 − ad/d + upqskq,u0=0du + aupqskq,u0=90°du

qps1 + ad/d + upqskq,u0=0du − aupqskq,u0=90°du
,

a ;
n10d12 + n20

În10
2 − 1d12 + În20

2 − 1
, s30d

wheren10=n1/n0, n20=n2/n0, d12=d1/d2, and we take into
account that

upqskl,u0=90°du < upqskq,u0=90°du

=
1

d
UlnSÎn20

2 − 1n10
2

În10
2 − 1n20

2 D
3sinS qp

1 +În10
2 − 1d12/În20

2 − 1
DU ,

FIG. 1. Two-layered periodic dielectric structure(bi-layer pho-
tonic crystal).
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upqskr,u0=0du < upqskq,u0=0du

=
1

d
UlnSn10

n20
DsinS qp

1 + n10d12/n20
DU . s31d

One sees that the relative bandwidth of theqth omnidirec-
tional band(when it exists) depends on just three ratios:n10,
n20, and d12. For each choice of materials, i.e., for each
choice ofn10 andn20, there is a value ofd12 that maximizes

the relative bandwidth. Moreover, for a given ambient me-
dium n0 we can obtain the widest possible relative bandwidth
of the qth omnidirectional band if we maximize the above
function with respect to all three parameters simultaneously.

Let us consider a specific example. For the tin sulfide/
silica (n1=2.6, n2=1.46) structure in airsn0=1.0d on a sub-
strate withnf =2.6, the first omnidirectional reflection band is
centered at the frequencync=4.4931014 Hz slc=668 nmd
with the relative bandwidthD1=9.2% if the thicknesses of
the layers ared1=80 nm andd2=115 nm. These parameters
correspond to those in an experiment of Deopuraet al. [14].
Keeping the first material the samesn1=2.6d, we obtain from
Eq. (30) that the optimal second material should haven2
=1.5 and the ratio of the layer thicknesses should bed12
=8/11, rather thand12=16/23. This ratio provides relative
bandwidth D1=9.4%. To obtain omnidirectional reflection
centered at the same frequencync=4.4931014 Hz, we need

FIG. 2. Bloch phase and reflection vs frequency for TM mode at
normal and 85° angle of incidence on the two-layered periodic
structure with the parameters described in text; exact numerical
results(solid line); first approximation of the semiclassical theory
(thin line with points). The shaded region shows the omnidirec-
tional band gap.

FIG. 3. Harmonic periodic dielectric structure.

FIG. 4. Bloch phase and reflection vs frequency for TM mode at
normal and 85° angle of incidence on the harmonic periodic struc-
ture with a moderatesnA=0.5d refractive index modulation; the pa-
rameters are as described in text; exact numerical results(solid
line); first approximation of the semiclassical theory(thin line with
points).
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d1=80 nm andd2=110 nm. In Fig. 2 we show the Bloch
phase f and reflection coefficient for a structure ofN
=6 periods. The exact results were obtained numerically by
the transfer matrix method. We can see that even the first
approximation of the semiclassical coupled wave theory
works well for all frequencies of the incoming waves.

IV. HARMONIC PERIODIC STRUCTURE

As a second application of our theory, we consider a pe-
riodic structure with a harmonic refractive index profile of
the form nszd=nav+nA sins2pz/dd; see Fig. 3. Initially we
takenav=1.965 andd=190 nm as in the previous example of
a bilayer photonic crystal. The number of periodsN=6 and
the refractive indices of the ambient median0=1 and the
substratenf =2.6 correspond to that example as well. For a
moderate refractive index modulationnA=0.5 the results are
shown in Fig. 4. Again, the first approximation of the semi-
classical coupled wave theory is in good agreement with the
exact numerical solutions.

For the second harmonic structure we takenav=3 andd
=124.5 nm(to keep the same productnavd as in the previous
example) and consider the very deep modulationnA=1.5.
The results are shown in Fig. 5. The first approximation,
especially for normal incidence, is satisfactory only in for-
bidden bands. However, the second approximation works
well for all frequencies of the incoming waves. Also, this
example shows that for TM waves, the first approximation of
our semiclassical coupled wave theory works better for large
incident anglesu0 than for small ones. This is contrary to the
case of TE waves; see Ref.[9].

V. CONCLUSIONS

The semiclassical coupled wave theory[9] has been ex-
tended to TM waves. Surprisingly, the method appears to
work even better for TM waves than for TE waves. In many
cases the first approximation of our theory provides adequate
results, using simple analytic expressions. However, if the
modulation of the refractive index of the periodic structure is
very deep, one needs to go to the second approximation. This
is based on the Bogolyubov averaging method, and uses
somewhat more complicated expressions. We now plan to
extend the semiclassical coupled wave theory to absorptive
media.
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